AC-Induced Cyclic Deformation in Aluminum Interconnects

R. R. Keller

N.I.S.T. Materials Reliability Division
Boulder, CO

R. Mönig, C. A. Volkert, E. Arzt, and O. Kraft
Max-Planck-Institut für Metallforschung
Stuttgart, Germany

- Strange, Irreversible Damage
- Temperature and Stress
- Fatigue
- Effects of Passivation
- Concluding Remarks

What is Known about non-DC EM?

Generally, non-DC stressing leads to longer, but nonetheless finite lifetimes.

There is a "healing" effect when the current is reversed.

So, why bother??

VOLKERT, C. A., "Electromigration in Interconnects"

To be published in Encyclopedia of Materials: Science and Technology, Eds. K.H.J. Buschow, R. Cahn, M. Flemmings, B. Ilschner, E.J. Kramer, S. Mahajan, Elsevier Science Ltd., Oxford, UK

Electromigration as You've Never Seen It Before?

Unpassivated Al-1Si, "conventional" processing

Tested at 20° C (nominally), 100 Hz, sinusoidal AC, 0 A DC offset

~10 MA/cm² current density

Distribution of Cyclic Damage

100 μm

10 μm

DC Testing at these Current Densities

DC damage looks considerably different from AC damage.

Characteristic Distances

General Distance Estimate at 100 Hz, t = 0.01 s:

$$x \approx \sqrt{Dt}$$

Diffusion Distances during 1 Cycle at 100 Hz

	$D (m^2/s)$	X
Grain Boundary Diffusion	10 ⁻¹⁵	3 nm
Lattice Diffusion	10 ⁻¹⁸	0.1 nm
Thermal Diffusion	10 ⁻⁴	1 mm

It is questionable whether atomic diffusion plays an important role.

But **temperature** may...

Temperature Change in Each Cycle

Temperature Rise during

1 Cycle at < 250 Hz

j (MA/cm²)	ΔT (°C)
0.1	~ 0
1.0	2
2.0	8
3.0	18
10	200

X. Gui, J.W. Haslett, S.K. Dew, and M.J. Brett, "Simulation of Temperature Cycling Effects of Electromigration Behavior Under Pulsed Current Stress," IEEE Trans. Electr. Dev. 45, 380-386 (1998).

Temperature Changes due to Joule Heating

Performed calibration of R vs. T:

- low AC current,
- sample in furnace,
- allowed to equilibrate

Examined square waveform (same power as sine) using oscilloscope:

 $\Delta T \approx 50 - 100$ °C/cycle for 10 MA/cm²

Thermomechanical Stresses

 $\varepsilon_{\text{thermal}} = \Delta \alpha \ \Delta T \ \text{(between Al and Si)}$

$$\Delta \alpha = 20 \times 10^{-6} / K$$
 $\Delta T \approx 100^{\circ} C$

 $\varepsilon_{thermal} \approx 0.2\%$ total strain per cycle

 $\sigma_{\text{thermal}} \approx 140 \text{ MPa /cycle},$

i.e. comparable to macroscopic yield stress

For comparison, σ_{ys} (thin Al film) \approx 120 MPa

On local scale, flow stress could be exceeded, due to dislocations, grain boundaries, etc. (basis for fatigue)

Temperature/Stress Behavior During AC Cycling

$$\Delta T \sim power \sim i^2$$

 $\sigma \sim \epsilon \sim \Delta T$ Note: 100 Hz AC ⇒ 200 Hz fatigue

Tension-tension depicted here. Could go tension-compression, depending on ΔT , $\sigma_{residual}$.

AC Damage Resembles Fatigue Damage

Load

 $1 \mu m$

 $6 \times 10^6 \text{ cycles}$ $j = 10 \text{ MA/cm}^2, \Delta \epsilon \approx 0.2\%$ 100 Hz ACAl-1Si 10^6 cycles $\Delta \epsilon = 0.8\%$ 10 Hz Pure Al

Damage *Distribution* at a Given Time During Such a Test

Ranges from seemingly untouched to drastically altered areas:

Varying degrees of plasticity suggest progression in "slip order", dependent upon crystallography.

1 μm

Cross-Sections

Damage appears confined to individual grains:

EBSD measurements underway...

Dislocations?

0.5 μm

Considerable topography, reminiscent of fatigue-induced slip upsets. NO dislocation structures typical of advanced stages of fatigue in bulk metals, *i.e.* cells, PSBs, not even tangles.

Effect of confined volume? Looks rather like the Nix picture...

Need more TEM in any case!

Lifetimes

S-N Representation of Fatigue Life

Time to Open Circuit

Used in S-N Plot

Fatigue Failure

Crack initiation at free surfaces:

- evolution of lower energy dislocation structures
 - tangles, cells, PSBs
- stress concentrations and surface topography
- extrusions and intrusions

During AC stressing:

• j increases as cross-section decreases

If fatigue analogy is correct:

Hard passivations (e.g. oxides, nitrides) may retard damage Soft overlayers (e.g. low-k polymers) perhaps not so effective...

Effect of Soft Passivation

Coated with 2 µm photoresist (cured)
Tested in AC at 11 MA/cm²
Photoresist stripped in acetone

Conclusion: Soft overlayer does not change damage morphology.

Speculation: Cu/low-k systems could spell trouble...

Effect of Hard Passivation

Coated with 0.3 µm Si₃N₄; Tested in AC at 11 MA/cm²

 $1 \mu m$

Conclusion: If hard overlayer doesn't adhere well, still get damage. Cannot yet say if well-adherent hard passivation inhibits damage.

Whiskers...

Perhaps diffusion does indeed play an important role, supplementing the fatigue process.

Concluding Remarks

- AC Damage Distinctly Different from DC Damage
- Site Selectivity
 - Local microstructure is important
- Fatigue Concepts Seem to Apply
 - Temperature cycles, causing Δε
 - Need more lifetime statistics, but seems consistent with nanostructure fatigue
- Soft Overlayers do NOT Prevent Damage
 - Cu/low-k systems may be susceptible
- Separation of Temperature and Current Effects
 - Pure fatigue versus EM
- NIST/MPI Test Structure Underway

